725 research outputs found

    Experimental study on the removal of sulfur compounds and siloxanes from biogas

    Get PDF
    Biogas is a renewable energy source, which can be produced by anaerobic digestion with anaerobic organisms from agriculture waste, manure, municipal waste, sewage, food waste, etc. The biogas consists primarily of methane and carbon dioxide, but also smaller amounts of nitrogen, oxygen, hydrogen and volatile organic compounds including sulfur compounds, halogenated compounds and organic silicon compounds may be present. Here, methane which is the main component in the biogas may be used as a fuel in many applications such as heating, combined heat and power systems, fuel cells, etc. For the implementation of methane, therefore, the biogas needs purification to improve its quality in most cases by removing impurities from the biogas, resulting in no corrosion and scaling problems in the applications. In the present work, a hybrid biogas purification process, consisting of a physicochemical process with an adsorption for the removal of sulfur compounds and siloxanes and a membrane separation process for the removal of carbon dioxide, has been proposed. The main focus of this study is to examine the physical properties and adsorption characteristics of adsorbents being used to remove sulfur compounds and siloxanes from the biogas. Indeed, recent studies are on the desulfurization and siloxane removal process using an activated carbon and impregnated activated carbon. However, there are many different types of sulfur compounds and siloxanes in the biogas and each may have a different reaction rate and adsorption capacity. In this study, therefore, several commercially-available adsorbents are selected to analyze their removal capacities for the main components (methane) and major impurities in the biogas. The main impurities considered in this work are hydrogen sulfide (H2S), carbonyl sulfide (COS), carbon disulfide (CS2), Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5), based on the measurements from the on-site sewage treatment plant in Incheon, Korea. In the bench-scale adsorption experiments, iron oxide, activated carbon, impregnated activated carbon and inorganic adsorbents such as zeolite and silica gel are used as adsorbents for the removal of impurities from synthetic biogas and their physical properties are analyzed with XRF, SEM and BET analyses. The experimental results show that the adsorption capacity of hydrogen sulfide in the iron oxide (IO) is superior to those of the activated carbon (AC) and impregnated activated carbon (IAC) with a relatively good adsorption capacity (Figure 1). In addition, the removal efficiency of carbonyl sulfide and carbon disulfide with the activated carbon is more effective than using the iron oxide having a very poor adsorption capacity (Figure 2). It is also shown that both activated carbon and zeolite exhibit a high adsorption capacity of siloxanes D4 and D5. Especially, in case of siloxane D5, the zeolite has a better adsorption capacity than the activated carbon (Figure 3). More detailed results will be presented at the conference. Please click Additional Files below to see the full abstract

    Responses of Agroecosystems to Climate Change: Specifics of Resilience in the Mid-Latitude Region

    Get PDF
    This study examines the productivity and resilience of agroecosystems in the Korean Peninsula. Having learned valuable lessons from a Chapman University project funded by the United States Department of Agriculture which concentrated on the semi-arid region of southwestern United States, our joint Korea—Chapman University team has applied similar methodologies to the Korean Peninsula, which is itself an interesting study case in the mid-latitude region. In particular, the Korean Peninsula has unique agricultural environments due to differences in political and socioeconomic systems between South Korea and North Korea. Specifically, North Korea has been suffering from food shortages due to natural disasters, land degradation and political failure. The neighboring developed country, South Korea, has a better agricultural system but a low food self-sufficiency rate. Therefore, assessing crop yield potential (Yp) in the two distinct regions will reveal vulnerability and risks of agroecosystems in the mid-latitude region under climate change and variability and for different conditions

    Assessment of Agricultural Drought Considering the Hydrological Cycle and Crop Phenology in the Korean Peninsula

    Get PDF
    Hydrological changes attributable to global warming increase the severity and frequency of droughts, which in turn affect agriculture. Hence, we proposed the Standardized Agricultural Drought Index (SADI), which is a new drought index specialized for agriculture and crops, and evaluated current and expected droughts in the Korean Peninsula. The SADI applies crop phenology to the hydrological cycle, which is a basic element that assesses drought. The SADI of rice and maize was calculated using representative hydrological variables (precipitation, evapotranspiration, and runoff) of the crop growing season. In order to evaluate the effectiveness of SADI, the three-month Standardized Precipitation Index, which is a representative drought index, and rainfed crop yield were estimated together. The performance evaluation of SADI showed that the correlation between rainfed crop yield and SADI was very high compared with that of existing drought index. The results of the assessment of drought over the past three decades provided a good indication of a major drought period and differentiated the results for crops and regions. The results of two future scenarios showed common drought risks in the western plains of North Korea. Successfully validated SADIs could be effectively applied to agricultural drought assessments in light of future climate change, and would be a good example of the water-food nexus approach

    Assessment of Agricultural Drought Considering the Hydrological Cycle and Crop Phenology in the Korean Peninsula

    Get PDF
    Hydrological changes attributable to global warming increase the severity and frequency of droughts, which in turn affect agriculture. Hence, we proposed the Standardized Agricultural Drought Index (SADI), which is a new drought index specialized for agriculture and crops, and evaluated current and expected droughts in the Korean Peninsula. The SADI applies crop phenology to the hydrological cycle, which is a basic element that assesses drought. The SADI of rice and maize was calculated using representative hydrological variables (precipitation, evapotranspiration, and runoff) of the crop growing season. In order to evaluate the effectiveness of SADI, the three-month Standardized Precipitation Index, which is a representative drought index, and rainfed crop yield were estimated together. The performance evaluation of SADI showed that the correlation between rainfed crop yield and SADI was very high compared with that of existing drought index. The results of the assessment of drought over the past three decades provided a good indication of a major drought period and differentiated the results for crops and regions. The results of two future scenarios showed common drought risks in the western plains of North Korea. Successfully validated SADIs could be effectively applied to agricultural drought assessments in light of future climate change, and would be a good example of the water-food nexus approach

    High Temperatures and Kidney Disease Morbidity: A Systematic Review and Meta-analysis

    Get PDF
    Objectives In recent years, serious concerns have been raised regarding the impacts of rising temperatures on health. The present study was conducted to investigate the relationship between elevated temperatures and kidney disease through a systematic review and meta-analysis. Methods In October 2017, 2 researchers independently searched related studies in PubMed and Embase. A meta-analysis was conducted using a random-effects model, including only studies that presented odds ratios, relative risks, or percentage changes, along with 95% confidence intervals (CIs). The characteristics of each study were summarized, and the Egger test and funnel plots were used to evaluate publication bias. Results Eleven studies that met the criteria were included in the final analysis. The pooled results suggest an increase of 30% (95% CI, 20 to 40) in kidney disease morbidity with high temperatures. In a disease-specific subgroup analysis, statistically significant results were observed for both renal colic or kidney stones and other renal diseases. In a study design–specific subgroup analysis, statistically significant results were observed in both time-series analyses and studies with other designs. In a temperature measure–specific subgroup analysis, significant results were likewise found for both studies using mean temperature measurements and studies measuring heat waves or heat stress. Conclusions Our results indicate that morbidity due to kidney disease increases at high temperatures. We also found significant results in subgroup analyses. However, further time-series analyses are needed to obtain more generalizable evidence

    Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity

    Get PDF
    Carbon-coated ZnWO4 [C-ZW] nanorods with a one-dimensional core/shell structure were synthesised using hydrothermally prepared ZnWO4 and malic acid as precursors. The effects of the carbon coating on the ZnWO4 nanorods are investigated by thermogravimetry, high-resolution transmission electron microscopy, and Raman spectroscopy. The coating layer was found to be in uniform thickness of approximately 3 nm. Moreover, the D and G bands of carbon were clearly observed at around 1,350 and 1,600 cm-1, respectively, in the Raman spectra of the C-ZW nanorods. Furthermore, lithium electroactivities of the C-ZW nanorods were evaluated using cyclic voltammetry and galvanostatic cycling. In particular, the formed C-ZW nanorods exhibited excellent electrochemical performances, with rate capabilities better than those of bare ZnWO4 nanorods at different current rates, as well as a coulombic efficiency exceeding 98%. The specific capacity of the C-ZW nanorods maintained itself at approximately 170 mAh g-1, even at a high current rate of 3 C, which is much higher than pure ZnWO4 nanorods

    Analysis of surface folding patterns of diccols using the GPU-Optimized geodesic field estimate

    Get PDF
    Localization of cortical regions of interests (ROIs) in the human brain via analysis of Diffusion Tensor Imaging (DTI) data plays a pivotal role in basic and clinical neuroscience. In recent studies, 358 common cortical landmarks in the human brain, termed as Dense Indi- vidualized and Common Connectivity-based Cortical Landmarks (DICCCOLs), have been identified. Each of these DICCCOL sites has been observed to possess fiber connection patterns that are consistent across individuals and populations and can be regarded as predictive of brain function. However, the regularity and variability of the cortical surface fold patterns at these DICCCOL sites have, thus far, not been investigated. This paper presents a novel approach, based on intrinsic surface geometry, for quantitative analysis of the regularity and variability of the cortical surface folding patterns with respect to the structural neural connectivity of the human brain. In particular, the Geodesic Field Estimate (GFE) is used to infer the relationship between the structural and connectional DTI features and the complex surface geometry of the human brain. A parallel algorithm, well suited for implementation on Graphics Processing Units (GPUs), is also proposed for efficient computation of the shortest geodesic paths between all cortical surface point pairs. Based on experimental results, a mathematical model for the morphological variability and regularity of the cortical folding patterns in the vicinity of the DICCCOL sites is proposed. It is envisioned that this model could be potentially applied in several human brain image registration and brain mapping applications

    Hyperspectral Analysis of Pine Wilt Disease to Determine an Optimal Detection Index

    Get PDF
    Bursaphelenchus xylophilus, the pine wood nematode (PWN) which causes pine wilt disease, is currently a serious problem in East Asia, including in Japan, Korea, and China. This paper investigates the hyperspectral analysis of pine wilt disease to determine the optimal detection indices for measuring changes in the spectral reflectance characteristics and leaf reflectance in the Pinus thunbergii (black pine) forest on Geoje Island, South Korea. In the present study, we collected the leaf reflectance spectra of pine trees infected with pine wilt disease using a hyperspectrometer. We used 10 existing vegetation indices (based on hyperspectral data) and introduced the green-red spectral area index (GRSAI). We made comparisons between non-infected and infected trees over time. A t-test was then performed to find the most appropriate index for detecting pine wilt disease-infected pine trees. Our main result is that, in most of the infected trees, the reflectance changed in the red and mid-infrared wavelengths within two months after pine wilt infection. The vegetation atmospherically resistant index (VARI), vegetation index green (VIgreen), normalized wilt index (NWI), and GRSAI indices detected pine wilt disease infection faster than the other indices used. Importantly, the GRSAI results showed less variability than the results of the other indices. This optimal index for detecting pine wilt disease is generated by combining red and green wavelength bands. These results are expected to be useful in the early detection of pine wilt disease-infected trees

    Assessing Environmentally Sensitive Land to Desertification Using MEDALUS Method in Mongolia

    Get PDF
    Desertification is a global phenomenon caused by various processes, including climate change, vegetation processes, and human activities. The need to combat desertification is increasing in many countries. A reasonable assessment of the vulnerability or sensitivity of land cover to desertification at national scales is crucial to formulate appropriate strategies or policies for combating it. The main purpose of this work was to quantitatively assess the sensitivity of land cover to desertification in Mongolia using the MEDALUS approach. The MEDALUS method is a widely known technique for assessing desertification in the Mediterranean area. In this study, the method was adjusted to be applied to Mongolia, while the numerical methods of the MEDALUS remained the same. The modified MEDALUS method used nine factors from 2003 and 2008 to quantify the sensitivity of land to desertification. As a result, our study resulted in the calculation and spatial distribution of the Environmental Sensitive Area Index (ESAI), produced throughout Mongolia. In 2003, the middle region of the southern Mongolia had the highest sensitivity to desertification, while sensitivity in 2008 increased in the western area. Mongolia’s area with the highest ESAI range increased approximately five times, indicating rapid desertification occurring throughout Mongolia from 2003 to 2008
    • …
    corecore